MMH: Maximum Margin Supervised Harmoniums

نویسندگان

  • Ning Chen
  • Jun Zhu
چکیده

Exponential family Harmoniums (EFH) are undirected topic models that enjoy nice properties such as fast inference compared to directed topic models. Supervised EFHs can utilize documents’ side information for discovering predictive latent topic representations. However, existing likelihood based estimation does not yield conclusive results. This paper presents a max-margin approach to learning supervised EFHs for joint latent topic discovery and classification. The learning problem is efficiently solved with coordinate descent. We demonstrate the advantages of the max-margin approach on video data classification and retrieval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Maximum Margin Similarity for Semi-Supervised Learning

1. Nonparametric Label Propagation (LP) has been proven to be effective for semi-supervised learning problems, and it predicts the labels for unlabeled data by a harmonic solution of an energy minimization problem which encourages local smoothness of the labels in accordance with the similarity graph. 2. On the other hand, the success of LP algorithms highly depends on the underlying similarity...

متن کامل

Deep Transductive Semi-supervised Maximum Margin Clustering

Semi-supervised clustering is an very important topic in machine learning and computer vision. The key challenge of this problem is how to learn a metric, such that the instances sharing the same label are more likely close to each other on the embedded space. However, little attention has been paid to learn better representations when the data lie on non-linear manifold. Fortunately, deep lear...

متن کامل

Maximum Margin Semi-Supervised Learning for Structured Variables

Many real-world classification problems involve the prediction of multiple inter-dependent variables forming some structural dependency. Recent progress in machine learning has mainly focused on supervised classification of such structured variables. In this paper, we investigate structured classification in a semi-supervised setting. We present a discriminative approach that utilizes the intri...

متن کامل

Methylmercury-cholinesterase interactions in rats.

The interaction of methylmercury hydroxide (MMH) and cholinesterases was studied in male and female rats. MMH administered subcutaneously in doses of 10 mg/kg for 2 days reduced the level of plasma cholinesterase (ButChE) by 68% in females and 47% in males while brain acetylcholinesterase (AChE) was unaffected. Normal females had higher but more variable ButChE levels than normal males. In a ti...

متن کامل

Synthesis of maximum margin and multiview learning using unlabeled data

In this presentation we show the semi-supervised learning with two input sources can be transformed into a maximum margin problem to be similar to a binary SVM. Our formulation exploits the unlabeled data to reduce the complexity of the class of the learning functions. In order to measure how the complexity is decreased we use the Rademacher Complexity Theory. The corresponding optimization pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010